four parameters, more information is needed. Redington, Olson & Cross (1962) chose an OH distance of 0.95 Å and obtained an O-O distance of 1.475 (4) Å from their infrared spectra. Busing & Levy (1965) feel that a more reasonable choice would be 0.96 Å, giving r(O-O) = 1.467 (4) Å. The microwave data of Oelfke & Gordy (1969) lead to r(O-O) = 1.470 Å for r(OH) = 0.96 Å.

The value of r(O-O) in $(NH_4)_2C_2O_4$. H_2O_2 uncorrected for librational motion [1.452 (1) Å] is significantly shorter than the gas-phase value. Based on our estimate of the librational correction, about 0.004 Å, the difference between solid- and gas-phase O-O distances will barely be significant, [1.467 (4) - 1.456 (1)] Å = 0.011 (4) Å. We therefore feel that more reliable gas-phase data and a rigorous correction for thermal motion in the solid are needed to settle this question.

References

- BELITSKUS, B. & JEFFREY, G. A. (1965). Acta Cryst. 18, 458.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142. BUSING, W. R. & LEVY, H. A. (1965). J. Chem. Phys. 42, 3054.
- CATICHA-ELLIS, S. & ABRAHAMS, S. C. (1968). Acta Cryst. B24, 277.

CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 757.

CRUICKSHANK, D. W. J. (1961). Acta Cryst. 14, 896.

- GOUGOUTAS, J. Z. & CLARDY, J. C. (1970). Acta Cryst. B26, 1999.
- GROTH, P. (1967). Acta Chem. Scand. 21, 2608, 2631, 2695, 2711.
- KIM, H. S., CHU, S. & JEFFREY, G. A. (1970). Acta Cryst. B26, 896.
- Lu, C. S., Hughes, E. W. & Giguère, P. A. (1941). J. Amer. Chem. Soc. 63, 1507.
- MATHERN, G., WEISS, R. & ROHMER, R. (1969). Chem. Commun. p. 70.
- MATHERN, G., WEISS, R. & ROHMER, R. (1970). Chem. Commun. p. 153.
- OELFKE, W. C. & GORDY, W. (1969). J. Chem. Phys. 51, 5336.
- OLOVSSON, I. & TEMPLETON, D. H. (1960). Acta Chem. Scand. 14, 1325.
- PEDERSEN, B. F. (1967). Acta Chem. Scand. 21, 779.
- PEDERSEN, B. F. (1969a). Acta Chem. Scand. 23, 342.
- PEDERSEN, B. F. (1969b). Structural Aspects of Perhydrates, p. 12. Oslo: Universitetsforlaget.
- PEDERSEN, B. F. (1969c). Acta Chem. Scand. 23, 1871.
- PEDERSEN, B. F. & PEDERSEN, B. (1964). Acta Chem. Scand. 18, 1454.
- REDINGTON, R. L., OLSON, W. B. & CROSS, P. C. (1962). J. Chem. Phys. 36, 1311.
- SAX, M., BEURSKENS, P. & CHU, S. (1965). Acta Cryst. 18, 252.
- SAX, M. & MCMULLAN, R. K. (1967). Acta Cryst. 22, 281.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- SIVERTSEN, B. K. & SØRUM, H. (1969). Z. Kristallogr. 130, 449.

Acta Cryst. (1972). B28, 1016

On the Structures of Y₂Zn_{~9}, Gd₂Zn_{~9}, and Related Compounds*

BY DON T. CROMER AND ALLEN C. LARSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544, U.S.A.

(Received 4 June 1971)

A number of $M_2X_{\sim 9}$ compounds exist where *M* is a rare-earth or Pu atom and *X* is Zn or Cd. They all have a hexagonal cell, or subcell, with *a* about 14 to 15.5 Å and *c/a* about 0.98. Many of the compounds have a superlattice which increases the *a* axis and may or may not lower the symmetry. $Gd_2Zn_{\sim 9}$ is an ordered example of the parent structure. $Y_2Zn_{\sim 9}$ has an occupational disorder but does not have a superlattice. $Pu_2Zn_{\sim 9}$, $Y_2Cd_{\sim 9}$ and $Ce_2Cd_{\sim 9}$ each have different superlattices, but so far none of these superstructures has been solved.

Introduction

Several $M_2X_{\sim 9}$ compounds are known where M is a large rare-earth or plutonium atom and X is a smaller zinc or cadmium atom. The structure of the compound $Pu_2Zn_{\sim 9}$ has been reported by Larson & Cromer (1966, 1967). Cramer & Wood (1967) in their study of the Pu-Zn system have designated this phase as η , and

we use their nomenclature for Pu_2Zn_{29} and similar phases. The η phase has a hexagonal subcell, probable space group $P6_3/mmc$. The previous work on $\eta Pu-Zn$ gave what is best described as the average structure for the subcell, for it was recognized that the true cell has a doubled *a* axis.

By coincidence, at about the time the work on η Pu-Zn was started, Elliott & Lemons (1964) were making vapor pressure measurements on the Ce-Cd system at approximately the η composition. To interpret their data they proposed the existence of a large

^{*} Work performed under the auspices of the U.S. Atomic Energy Commission.

number of ordered phases having very small composition differences and coined the term 'microphase'. It was found that these Ce-Cd compounds were isostructural with the Pu-Zn η phase.

Roof & Elliott (1965) studied η Ce–Cd and observed several different crystal lattices in each of several alloy specimens. They found superlattices that multiplied the *a* axis by 3, 6, or 8 times but none that doubled *a* as in η Pu–Zn. Further, the symmetry of many of these superlattices was orthorhombic or monoclinic instead of hexagonal. The study provided independent evidence for the microphase concept.

The structure proposed for η Pu–Zn has two formula units of $Pu_{13}Zn_{58}$ in the cell, leading to the formula Pu₂Zn_{8.92}. Wang (1967) has published a paper on Gd₁₃Zn₅₈, another compound of this type. The structure given by Wang for η Gd–Zn is essentially the same as that of η Pu–Zn, but he described it in $P6_3mc$ rather than $P6_3/mmc$. If the origin is shifted by about $\frac{1}{4}$ along the z axis, if other small shifts are made, and if certain position sets are combined, Wang's structure of η Gd–Zn then corresponds quite closely to our structure of η Pu–Zn. In the reported structure of η Gd–Zn there are several errors and omissions in the distance table, the most notable being the Zn(10)-Zn(13) distance which should be 2.01 Å rather than 2.32 Å. Also, using Wang's parameters we do not calculate the same structure factors for η Gd–Zn. We suspect that the patch which he refers to for $x\bar{x}z$ positions was incorrectly made.

We decided to make a further study of η phases, in particular the compounds that have shown no evidence of a superlattice and one having a pronounced superlattice, in the hope of determining the changes which produce the long-range order.

Lott & Chiotti (1966) have reported Y-Zn and Ce-Zn compounds of this type. Mason & Chiotti (1970) have also reported the existence of η Pr-Zn. We have prepared and studied η Y-Zn and η Gd-Zn,

neither of which has a detectable superlattice. We have also prepared η Y-Cd which has a fairly pronounced superlattice. In η Y-Cd the hexagonal *a* axis (but not the b axis) is doubled. This doubling leads to an orthorhombic cell of the same size as the hexagonal C-centered orthorhombic cell, but with a large number of added reflections which violate the C-centering conditions. A number of space groups could result, depending on which of the symmetry planes of the original hexagonal cell are preserved. In this case the space group is Pbnn (or Pnna in standard setting). Note that this space group is centric and unambiguously recognized by the systematic extinctions. Extensive twinning of this crystal could result in apparent hexagonal symmetry with a doubled *a* axis leading to the superlattice observed in η Pu–Zn. Cramer (1968) has stated that photomicrographs of η Pu–Zn show extensive twinning. Therefore, it is possible that our work on η Pu–Zn was done with a multiply twinned crystal having an orthorhombic superlattice of the type shown by η Y–Cd.

Experimental

Alloys of η Gd–Zn and η Y–Zn were made by arc melting and slowly cooling M_2X_9 stoichiometric mixtures of the elements. Rapid cooling was required to quench the η Y–Cd phase, which is probably not stable at room temperature. Further evidence of the instability of this phase is that whiskers of cadmium metal grow out from the surface after a few weeks. Such whiskers were also observed to form on η Ce–Cd. The alloys were crushed and single-crystal fragments were readily found.

Lattice constants were obtained from a least-squares analysis of the settings of 12 reflections measured with Mo $K\alpha_1$ radiation ($\lambda = 0.70926$ Å) on an automated Picker diffractometer (Busing & Levy, 1967). The lattice constants for several η phase compounds are given in Table 1. The orientation, least-squares, and data

Table 1	. Lattice	constants	for n	phase	$M_{2}X_{-1}$	compounds
		001101011110	,	pinabe	ATA /44 ~4	compound

	а	с	c /a	Reference
Pu-Zn	14·43 Å	14·14 Å	0.980	Larson & Cromer (1967)
Ce–Zn	14.60	14.11	0.966	Lott & Chiotti (1966)
Y–Zn	14.24	14.00	0.959	This work
Gd–Zn	14.31	14.05	0.982	This work
Gd–Zn	14-35	14.21	0.990	Wang (1967)
Ce-Cd	15.75	15.55	0.987	Roof & Elliott (1965)
Y-Cd (hexagonal subcell)	15.34	15.22	0.992	This work
Y-Cd (orthorhombic)	a = 15.34,	b = 26.59,	c = 15.22 Å	

Table 2. Refinements of η Gd–Zn

Model	R	R_w	Number of parameters	Number of observations
$P6_3mc$, isotropic*	0.125	0.078	68	780
$P6_3mc$, anisotropic*	0.132	0.076	135	780
$P6_3/mmc$, isotropic	0.153	0.095	37	780
P63/mmc, anisotropic*	0.135	0.083	76	780

* Thermal parameters not all real

collection programs used by the automated diffractometer were local versions of the Oak Ridge system (Busing, Ellison, Levy, King & Roseberry, 1968). Step scans were made with 2-sec counts at each step and increments of 0.05° 2 θ over a range of 2° plus the $\alpha_1 - \alpha_2$ dispersion. Zr-filtered Mo $K\alpha$ radiation was used. For η Gd–Zn the crystal shape was approximated by several plane faces, and absorption corrections were made by using the method of Busing & Levy (1957) and a modification of Burnham's (1962) program. The volume of the crystal was 1.6×10^{-3} mm³, and transmission factors varied from 0.011 to 0.072. For η Y-Zn, the intensity at 10° intervals around the diffraction vector was measured for several reflections having χ near 90°. These measurements which produced factors varying from 0.54 to 1.70, combined with a spherical absorption correction obtained from an average value of μR of 1.4 for the fragment, were used to make an empirical absorption correction. The absorption correction for both crystals was crude, but hopefully better than none. For η Gd–Zn, 8350 reflections were measured within a maximum 2 θ of 70°. Most reflections were measured

Table 3. Final parameters for η Gd–Zn

	x	у	Z	В
Gd(1)	0	0	0	3·7 (5) Å ²
Gd(2)	0.2065 (2)	- x	0.0515 (4)	0.3(1)
Gd(3)	0.5414(3)	-x	4	0.3 (1)
Gd(4)	0.8715 (5)	-x	14	2.2 (2)
Zn(1)	0	0	4	3.1 (9)
Zn(2)	13	3	34	1.9 (8)
Zn(3)	ł	23	0.0949 (18)	0.1 (3)
Zn(4)	0.3633 (7)	0.0362 (7)	0.1012 (7)	1.5 (1)
Zn(5)	0.0973 (6)	-x	0.1599 (10)	1.7 (2)
Zn(6)	0.0833 (10)	0.3666 (10)	0	1.1 (2)
Zn(7)	0.4372 (5)	-x	0.1395 (8)	0.5 (2)
Zn(8)	0.6011 (6)	-x	0.0527 (10)	0.8 (2)
Zn(9)	0.7626 (5)	-x	0.1606 (9)	0.9 (2)
Zn(10)	0.2692 (9)	-x	4	1.5 (4)
Zn(11)	0.8098 (12)	x	0	3.0 (3)
Zn(12)	$\frac{1}{2}$	1/2	0	3.0 (5)

Table 4. Interatomic distances in η Gd–Zn

 $g = 4 \cdot 2 (4) \times 10^{-6}$.

Standard deviations are about 0.01 Å for Gd-Zn and 0.02 Å for Zn-Zn distances.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd(1) - 2Zn(1)	3.51 Å	Zn(4) - Gd(2)	3·13 Å	Zn(8) - 2Gd(2)	3·09 Å
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-6Zn(5)	3.30	- Gd(2)	3.05	– Gd(3)	3.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6Zn(11)	2.72	- Gd(3)	3.10	-Zn(2)	3.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- Gd(4)	3.23	-Zn(3)	2.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd(2) - Zn(3)	3.20			-2Zn(4)	3.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-27n(4)	3.05	-Zn(4)	2.98	-Zn(7)	2.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2Zn(4)	3.13	-Zn(5)	3.40	-Zn(8)	2.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 7n(5)	3.10	-Zn(6)	2.58	-2Zn(9)	2.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-27n(6)	3.19	- Zn(7)	3.04	-Zn(12)	2.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2Zn(7)	3.15	-Zn(8)	3.10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-27n(8)	3.09	- Zn(9)	2.63	Zn(9)— Gd(2)	3.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Zn(9)	3.08	-Zn(11)	2.67	-2Gd(3)	3.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Zn(10)	3.19	-Zn(12)	2.67	- Gd(4)	2.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-27n(11)	3.16	211(12)	207	-Zn(2)	2.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-27n(12)	3.81	$Z_{n}(5) = Gd(1)$	3.30	-27n(4)	2.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\underline{\mathbf{z}}\mathbf{z}\mathbf{n}(1\mathbf{z})$	5 01	- Gd(2)	3.10	-2Zn(8)	2.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd(3) = 7n(2)	3.10	-2Gd(4)	3.14	-Zn(9)	2.51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-47n(4)	3.10	- 200(+)	2.72	21())	2 51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-72n(4)	3.24	-2Zn(4)	3.40	Zn(10) - 2Gd(2)	3.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-27n(7)	3.01	-Zn(5)	2.53	-2Zn(3)	2.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-27n(8)	3.14	-2Zn(6)	2.86	-2Zn(6)	2.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-47n(9)	3.08	-2Zn(11)	2.63	-4Zn(7)	2.73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2Zn(12)	3.66	2211(11)	2 05	-2Zn(10)	2.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2211(12)	5 00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd(4) - Zn(1)	3.18	Zn(6) - 2Gd(2)	3.19	Zn(11) - Gd(1)	2.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4Zn(4)	3.23	- Gd(3)	3.24	-2Gd(2)	3.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4Zn(5)	3.14	- Gd(4)	3.24	-2Gd(4)	3.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2Zn(6)	3.24	-2Zn(4)	2.58	-2Zn(4)	2.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2Zn(9)	2.98	-2Zn(5)	2.86	-2Zn(5)	2.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4Zn(11)	3.86	-Zn(6)	2.86	-2Zn(11)	2.73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	424(11)	5 00	-2Zn(7)	2.99	()	- • •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Z_{n}(1) - 2Gd(1)$	3.51	-Zn(10)	2.57	Zn(12)-4Gd(2)	3.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3Gd(4)	3.18	(10)		-2Gd(3)	3.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-67n(5)	2.72	$Z_{n}(7) - 2Gd(2)$	3.15	-4Zn(4)	2.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0211(5)	2 / 2	- Gd(3)	3.01	-2Zn(7)	2.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7n(2) - 3Gd(3)	3.10	-Zn(3)	2.65	-2Zn(8)	2.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-67n(8)	3.21	-2Zn(4)	3.04		
$\begin{array}{cccc} -2n(3) & 2 & 0 & -2n(3) \\ & & -2n(3) & -3Gd(2) & 3 & 20 & -2n(8) & 2 & 86 \\ & -3Zn(7) & 2 & 65 & -2Zn(10) & 2 & 73 \\ & -3Zn(8) & 2 & 63 & -Zn(12) & 2 & 50 \\ & -3Zn(10) & 2 & 70 & -22n(12) & 2 & 50 \end{array}$	-6Zn(9)	2.69	-2Zn(6)	2.99		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0211())	202	-Zn(7)	3.10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(3) - 3Gd(2)	3.20	- Zn(8)	2.86		
-3Zn(8) 2.63 $-Zn(12)$ 2.50 -3Zn(10) 2.70	-3Zn(7)	2.65	-2Zn(10)	2.73		
-3Zn(10) 2.70	-3Zn(8)	2.63	-Zn(12)	2.50		
	-37n(10)	2.70	211(12)	200		

at four equivalent positions. Out of 2091 unique reflections, 780 were considered to be observed according to the criterion $(I-B) > 3(I+B)^{1/2}$. The fact that very few reflections over 50° were observed is responsible for the large ratio of unobserved-to-observed reflections. A comparison of equivalent reflections gave:

$$R_{F} = \sum_{n} \sum_{i} |F_{i,n} - \bar{F}_{i}| \sum_{n} \sum_{i} F_{i,n} = 0.070 ,$$

where the summations are over the *n* equivalent measurements of the *i*th unique reflection. For η Y-Zn, 7949 reflections were measured within a maximum 2θ of 50°. Most reflections were measured at 12 equivalent positions, and, out of 863 unique reflections, 507 were considered observed, as given above. For these compared and averaged data, $R_F=0.121$. Weights were derived from counting statistics (Evans, 1961).

Least-squares calculations minimized $\sum w(F_o - F_c^*)^2$, where $F_c^* = KF_c$. $G(\theta, g, F_c, \overline{T})$, K is a scale factor, F_c is the ordinary calculated structure factor, and G is an extinction function (Zachariasen, 1963; Larson, 1970, equation 22) involving an extinction parameter g and the mean path length \overline{T} . An extinction parameter was not used for ηY -Zn, so $F_c^* = KF_c$ in this case. Discrepancy indices cited are $R = \sum |\Delta F| / \sum |F_o|$ and $R_w =$ $(\sum w \Delta F^2 / \sum w F_o^2)^{1/2}$ with unobserved reflections omitted. Scattering factors were from Cromer & Waber (1965) and dispersion corrections $\Delta f'$ and $\Delta f''$ were from Cromer (1965). Anisotropic thermal parameters were of the form:

$$\exp\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+hk\beta_{12}+hl\beta_{13}+kl\beta_{23})\right].$$

Results

 $\eta Gd-Zn$

Isotropic and anisotropic least-squares refinements of η Gd–Zn were made starting with both the acentric structure proposed by Wang (1967) and the centric structure given for η Pu–Zn. The results are summarized in Table 2. Hamilton's (1965) R ratio test strongly favors the acentric structure. However, for several reasons we believe the centric structure to be correct. First, because of uncertainties in defining the shape of the crystal that we used, there are probably large systematic errors in the absorption corrections. In the acentric refinement, two of the Zn atoms had negative isotropic thermal parameters, and in the corresponding anisotropic refinement, 18 of the 23 atoms had unreal thermal parameters. In the centric anisotropic refinement, six of the 16 atoms had unreal thermal parameters, but all atoms had positive thermal parameters for the isotropic refinement. The unreal thermal parameters probably reflect the systematic errors in the absorption corrections. The second reason for favoring the centric structure is that, as shown later, ηY -Zn is probably centric. The strongest evidence that this phase

Table 5. Refinements of ηY -Zn

Model	R	R_w	Number of parameters	Number of observations
P63mc, isotropic*	0.119	0.086	68	507
P63mc, anisotropic*	0.100	0.064	135	507
P6 ₃ /mmc, isotropic	0.136	0.096	37	507
P6 ₃ /mmc, anisotropic*	0.108	0.073	76	507
$P6_3/mmc$, anisotropic (disordered)	0.090	0.066	81	507

*Thermal parameters not all real.

Table 6. Final parameters for ηY -Zn

	x	у	z	$\beta_{11} imes 10^5$	$\beta_{22} \times 10^5$	$\beta_{33} \times 10^5$	$\beta_{12} \times 10^5$	$\beta_{13} \times 10^5$	$\beta_{33} \times 10^5$
Y (1)	0	0	0	56 (147)	β_{11}	223 (273)	β_{11}	0	0
Y(2)	0.2062 (3)	-x	0.0517 (4)	243 (41)	β_{11}	172 (35)	273 (102)	30 (39)	$-\beta_{13}$
Y(3)	0.5425 (4)	-x	4	308 (60)	β_{11}	213 (55)	338 (151)	0	0
Y(4)	0.8723 (6)	-x	4	314 (71)	β_{11}	1323 (128)	309 (180)	0	0
Zn(1)	0	0	4	239 (113)	β_{11}	981 (203)	β_{11}	0	0
Zn(2)	}	2 3	3	378 (119)	β_{11}	410 (149)	β_{11}	0	0
Zn(3)	1	23	0.0952 (12)	295 (70)	β_{11}	221 (79)	β_{11}	0	0
Zn(4)	0.3661 (5)	0.0341 (5)	0.1005 (4)	499 (56)	322 (50)	286 (28)	146 (80) -	- 230 (78)	29 (70)
Zn(5)	0.0984 (4)	-x	0.1581 (7)	584 (64)	β_{11}	369 (55)	815 (153)	79 (55)	$-\beta_{13}$
Zn(6)	0.0860 (6)	0.3673 (6)	4	236 (63)	196 (60)	250 (43)	139 (107)	0	0
Zn(7)	0.4371 (3)	-x	0 1426 (6)	419 (56)	β_{11}	227 (47)	628 (130)	-31 (42)	$-\beta_{13}$
Zn(8)	0.6009 (4)	-x	0.0521 (6)	291 (51)	β_{11}	236 (52)	77 (122)	-10(50)	$-\beta_{13}$
Zn(9)	0.7631 (4)	-x	0.1585 (6)	211 (44)	β_{11}	250 (51)	128 (113)	5 (43)	$-\beta_{13}$
Zn(10)	0.2701 (5)	-x	1	296 (71)	β_{11}	177 (69)	277 (169)	0	0
Zn(11)	0.8042	x	Ó	650 (68)	β_{11}	1072 (86)	450 (180)	628 (79)	$-\beta_{13}$
Zn(12)	$\frac{1}{2}$	$\frac{1}{2}$	0	841 (115)	β_{11}	551 (93)	1469 (182)	182 (79)	$-\beta_{13}$
Zn(13)	Ō	Ō	0.0938 (35)	229 (256)	β_{11}	320 (422)	β_{11}	0	0

Occupancy parameters: Y(1) 0.62 (7) Zn(13) 0.34 (6)

is centric, however, is that ηY -Cd, as mentioned earlier, has an unambiguously centric orthorhombic cell. It seems quite unlikely that long-range ordering to form a superlattice would cause a noncentric structure to become centric.

Table 3 gives the final parameters from the isotropic refinement of η Gd–Zn in the centric space group. The interatomic distances are shown in Table 4. Note that our shortest Zn–Zn distance is 2.50 Å. The shortest distance we found in the acentric model is 2.28 Å as opposed to 2.01 Å in Wang's (1967) model.

$\eta Y - Zn$

Isotropic and anisotropic refinements were again made in both space groups and the results are given in Table 5. The acentric model has 10 atoms with unreal anisotropic thermal parameters and two atoms with negative isotropic thermal parameters. In the centric anisotropic model, Y(1), at the origin, had a slightly negative $\beta_{11}[\sim -0.2\sigma(\beta_{11})]$ and a very large β_{33} (B=57 Å²). Y(4) also had a large $\beta_{33}(B=12$ Å²).

A difference Fourier map was calculated after the anisotropic centric refinement, and a large peak was found at $0, 0, 0 \cdot 1$. This peak was also quite evident in an observed electron density map. A final model was calculated with a fractional Y(1) atom at the origin and a fractional Zn(13) atom at 0,0,0 $\cdot 1$. The value of R for this model is also given in Table 5. Final parameters are listed in Table 6 and interatomic distances are given in Table 7. A final difference Fourier map showed residual features varying from -5 to +5 e.Å⁻³ at positions near atomic sites. Observed and calculated

Table 7. Interatomic distances in ηY -Zn

	Standard devia	tions are about 0.01	Å except as no	oted for Zn(13)	
Y(1) = 27n(1)	3.50 Å	Zn(4) - Y(4)	3·28 Å	Zn(8) - Zn(12)	2·59 Å
-6Zn(5)	3.28	-Zn(4)	2.94		
-67n(11)	2.79	- Zn(5)	3.40	Zn(9) - Y(2)	3.04
-0211(11)	217	21(5)	5 10	-2Y(3)	3.07
		- 7n(6)	2.59	- Y(4)	2.98
V(2) = 7 - (2)	2.10	- 2n(0)	2.08	-7n(2)	2.70
I(2) - ZI(3) = 27 - (4)	3.06	- 2n(7)	2.06	-27n(4)	2.63
-2ZI(4)	3.00	- 2n(0)	2.63	27n(8)	2.59
-2Zn(4)	3.09	- 2n(9)	2.03	$-22 \ln(6)$	2.56
-Zn(5)	3.03	- 2n(11)	2.03	- Zii())	2 50
-2Zn(6)	3.12	ZII(12)	2.00	$7_{n}(10) = 2V(2)$	2.10
-2Zn(7)	3.16		2.20	Zn(10) - 2I(2)	3.19
-2Zn(8)	3.08	Zn(5) - Y(1)	3.28	-2Zn(3)	2.07
– Zn(9)	3.04	- Y(2)	3.05	-2Zn(6)	2.33
- Zn(10)	3.19	-2Y(4)	3.13	-4Zn(7)	2.69
-2Zn(11)	3.10	- Zn(1)	2.75	-2Zn(10)	2.70
-2Zn(12)	3.79	-2Zn(4)	3.40		
ζ, γ		- Zn(5)	2.57	Zn(11) - Y(1)	2.79
Y(3) - Zn(2)	3.06	-2Zn(6)	2.83	-2Y(2)	3.10
-4Zn(4)	3.06	-2Zn(11)	2.62	-2Y(4)	3.84
-2Zn(6)	3.27	_ (,		-2Zn(4)	2.63
-2Zn(7)	3.00	Zn(6)-2Y(2)	3.15	-2Zn(5)	2.62
-27n(8)	3.12	-Y(3)	3.27	-2Zn(11)	2.79
-47n(9)	3.07	- Y(4)	3.24	- (. ,	
-27n(12)	3.65	-2Zn(4)	2.59	Zn(12)-4Y(2)	3.79
-2211(12)	5 05	-2Zn(5)	2.83	-2 Y(3)	3.65
Y(4) = 7n(1)	3.15	-Zn(6)	2.78	-4 Zn(4)	2.60
-47n(4)	3.28	-2Zn(7)	2.96	-2 Zn(7)	2.53
-4Zn(4)	3.13	- Zn(10)	2.55	-2 Zn(8)	2.59
-27n(6)	3.24				
-2Zn(0)	2.98	$Z_{n}(7) - 2Y(2)$	3.16	Additional distances	when
-47n(11)	3.84	-Y(3)	3.00	Zn(13) is present.	
	5 6 1	- Zn(3)	2.64	$Zn(13) - Y(1)^*$	1.31 (5)
7n(1) - 2V(1)	3.50	-27n(4)	2.98	-3Y(4)	3.83 (3)
Ln(1) - 21(1)	5 50				
-3Y(4)	3.12	-2Zn(6)	2.96	-Zn(1)	2.19 (5)
-6Zn(5)	2.75	- Zn(7)	3.01	-3Zn(5)	2.59 (2)
		- Zn(8)	2.88	-6Zn(11)	3.08 (2)
Zn(2) - 3Y(3)	3.06	-2Zn(10)	2.69	- Zn(13)	2.63 (10)
-6Zn(8)	3.21	- Zn(12)	2.53		
-6Zn(9)	2.70			Y(4) - 2Zn(13)	3.83 (3)
Zn(3) - 3Y(2)	3.19	Zn(8)-2 Y(2)	3.08	Zn(1) - 2Zn(13)	2.19 (5)
-3Zn(7)	2.64	- Y(3)	3.12	Zn(5)— $Zn(13)$	2.59 (2)
-3Zn(8)	2.62	- Zn(2)	3.21	Zn(11)-2Zn(13)	3.08 (2)
-3Zn(10)	2.67	- Zn(3)	2.62		
,		-2Zn(4)	3.06		
Zn(4) - Y(2)	3.09	- Zn(7)	2.88		
- Y(2)	3.06	-Zn(8)	2.81		
- Y(3)	3.06	-2Zn(9)	2.58		
• •					

* Zn(13) and Y(1) not simultaneously present.

structure factors with the standard deviations in the Table 9. Observed and calculated structure factors for observed values appear in Table 8 and 9.

Discussion

Both M(1) and M(4) are in rather roomy surroundings. The η Pu–Zn paper (Larson & Cromer, 1967) includes

Table 8. Observed and calculated structure factors for η Gd–Zn

Unobserved	structure	factors are	omitted;	column	headings
	are l.	$F_o/K, F_c^*/K$	and $\sigma(F_o)$).	

	arc 1, 1 0/ K, 1 c	/it and 0(1 0).	
[STITLG-GOVINCE Survey STUTULINEL ULEBARRY STUDINES STUDINES STUTULINEL STITUGARD STUTULINE STUTULINE	<pre>dif (' ' 0) W' ' 1</pre>		Luriumo I ar 1 500 1 GENERGENENENE I AT 1 5 1 Kenerenene I ar 1 and 1 ar 1 fant. I Lane. I Lane. I ar 1 ar 1 27 2001155 - 17 6 Kenerenenenenenenenenenenenenenenenenene
III Constantino (0 1 4 1 0000 1 0 1 1100 1 1100 1 10000 1 10000 1 0 1 10000 1 0 1 10000 1 0 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 100000 1 1000000	<pre>interface in the second s</pre>	<pre>Gound T Caleman T Garry T Finderson T Common T University T Experimentary T Experiment T T T T T T T T T T T T T T T T T T T</pre>	1 I GLANNER I SE VILLE I GLANNE I GLANNE I GLANNER COLLENDARIO I FUENCAURA I FUENCAURAU

 $\eta Y - Zn$

Column headings are l, F_o/K , F_c , 10 $\sigma(F_o)$. A minus sign preceding F_o means 'less than' and the value given is that derived from $3\sigma(I)$.

на U Ка U на О О 4676 Л Т	1 K+ 9 ++	2 8 4 7	He 3 Ke 7	H- 4 K= 10	H= 6 E+ 8
- 17/ 220 31 0 - 17/ 220 31 0 - 455 662 25 11 - 6 655 662 25 11 - 1/2 485 51 50 12	1979 1979 1979 1979 1979 1979 1979 1979	-71 56 C		0 118 135 43 1 18 135 44 3 101 40 5 151 100 40 5 151 100 40	
14 (27 28) 99 10 16 103 35 178 178 14 1 K 0 1 0 349 104 11 3	1 x- 10 268 292 23 1 -67 13 0 2 -69 67 0 3 -69 17 0 3	766 20 C 768 449 16 766 48 C			0 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -
1 - 57 16 - 2 - 57 - 6 28 - 5 - 65 163 20 7 - 39 172 14 9 - 239 272 14 9	2100 242 18 4 2100 242 18 4 2100 202 10 9 1011 112 29 10 1111 112 09 10	183 177 23 -00 11 20 109 124 34 243 11 54		140 50 50 50 50 50 50 50 50 50 50 50 50 50	5 130 125 36 9 - 33 12 12 9 - 13 12 12
7 187 191 16 10 9 57 53 59 11 9 94 75 24 10 185 185 16 mm 11 -65 5 0 12 78 57 61 2	-74 18 8 11 1 K+ 11 96 199 61	205 237 19 192 23 42 2 K+ 9	11 11 12 13 14 131 123 19 14 3 4 9 14 3 4 9	He 4 Ke 12 0 90 111 62 2 112 97 16	
13 - 14 53 57 1 15 - 74 51 0 16 - 74 51 0	11011 1101 1101 1101 1101 1101 1101 11		L -67 68 U 2 -69 56 U 3 -970 87 454 5 184 166 24	1 277 267 13	1 115 123 11
0 177 77 34 8 9 4 - 63 - 133 - 10 4 - 63 - 133 - 10 10 - 10 10 10 - 10 10 - 10	155 140 28 5 175 140 28 5 1 K+ 12 10	2061 200 CO		7 1048 1017 13 5 10 494 14 5 249 242 18 6 144 114 21 7 178 89 29	
92 75 46 1 92 75 46 1 16 -77 11 0		2 K+ 10 -71 46 0 -69 17 C			
44 12 30 57 8 44 138 30 30 44 138 30 55 75 30 50 10 700	-14 19 9	147 146 26 148 139 26 -772 45 0 104 79 60	5 -73 80 0 6 -71 204 18 7 312 204 18 8 141 125 30 4 -72 26 0	13 -12 56 13 He 5 Ke 5 9 434 782 43	H- 7 K- 7
6 90 122 19 0 7 50 67 35 1 8 151 158 13 2 9 98 110 19 3 10 127 115 24 4	-73 25 0 10 274 101 10 10 -73 40 00 14	108 87 38 2 4 11 145 172 29	H. 3 K. 11 1 -07 76 2 1 109 116 37 3 109 116 37	6 427 456 20 6 427 456 21 15 505 262 26 15 505 262 26 12 77 10 0	1 -72 -1 -3 H+ 7 F+ 8 1 -193 -34 -8
13 137 13 21 14 -70 130 0 m	1 ** 1* 1*5 76 3C	-70 105 10 -70 105 10	1071 344 00 1071 128 00 1071	0 93 96 23 1 101 198 20 1 00 33 00 23	802 193 31 2071 139 31 5 139 139 31 6 139 139 100
1 -41 34 0 11 -41 37 0 0 7 -41 37 10 0	2 K 0 0	-72 13 5 65 76 59 2 x - 12 -72 19 C		5 -67 52 5 6 171 151 5 7 174 133 5 8 -67 36 32 10 766 324 10	P# 7 K 9 0 100 68 36 1 88 56 56 2 -71 5 0
5 - 40 7 6 22 4 67 76 22 5 8 67 61 17 5 8 67 61 17 5 100 105 29 8		-750 205455 -170 205455	3 81 51 67 He 4 K4 0 1 113 117 14	H- 5 E- 7	4 -73 -75 -6 5 -73 -5 -6 He 8 -8 - 0 0 -295 -152 -27
123 -242 00 13 145 -777 76 40 13 145 -777 75 40		-73 11 C 2 K+ 13 		1 66 101 48 - 06 61 00 5 - 06 11 0 5 - 08 6 0 5 - 08 102 38 5 - 07 1 04 30	
1 26 25 40 10 1 26 26 12 0 26 26 12 0 2 40 31 0 2 40 32 40 2	273 21 78 3 2 Ke 2 1 55 22 58	2 42 0 2 43 0 -48 54 C			4 117 126 50 136 76 55 11 101 86 55 11 105 167 10
4 144 180 14 4 4 5 241 230 13 0 7 -50 3* C 12 8 75 79 20 12 9 114 113 25 14		98 104 21 177 171 18 1203 1208 12 1203 1208 12	15 _72 _1 05 H= 4 x. 4 2 592 560 27	0 - 250 291 19 2 - 067 36 39 3 - 141 121 29	H4 8 K 8
136 101 28 19 -70 30 0 14 -71 33 0 C 15 92 77 43 2	75 61 37 10 240 247 12	215 217 14 588 502 17 43 12 14 10 115 32	4 165 170 21 6 241 251 10 10 132 112 34 10 132 114 34	6 100 104 47 8 -71 27 3 9 196 180 23 10 -71 47 7	H+ 9 K+ 0 U 489 489 21 I 137 134 36 2 -68 41 6
y 175 347 18 5 1 102 1507 13 9 1 2757 235 13	-45 16 11 15 -45 228 10		H- 4 K- 5 0 159 178 30 1 - 60 11 0	1 107 121 1 1 107 121 1 3 -20 15 5	4 194 505 37 5 166 44 30 7 101 81 45 9 115 114 37
5 107 119 18 11 6 107 119 18 11 7 128 425 10 13 9 91 71 30 14	125 139 26 2 132 128 26 4 198 196 21 6 -70 12 2 10		1 102 100 20 1 102 100 20 1 102 100 20 1 101 101 20 7 101 101 20	5 171 10 30 6 171 10 36 7 115 110 36 9 173 22 3	11 10 10 10 10 10 10 10 10 10 10 10 10 1
12 197 195 19 11 12 197 195 19 11 13 -77 60 0 0			104 114 33	H- 5 K- 10 0 269 277 25 2 262 252 16 3 106 86 38	
U 60 25 60 3 1 86 73 25 7 3 78 65 27 8				5 -72 31 0 5 -76 36 5 7 -72 63 5 H= 5 8-11	
5 -60 15 0 10 - 6 23 103 27 13 8 145 153 27 13 10 77 81 50 14		127 132 27 -00 77 527 173 135 27	5 98 88 39 5 201 220 31 7 102 107 33 8 180 175 23	0 198 195 37 60 65 58 3 -77 56 58 4 -74 57 5	H= 11 K- 0 (158 172 62 2 269 266 23
11 -08 29 0 He 2 2 -70 29 0 He 2 1 -73 16 0 1 He 1 Ke 7 2	2 K 5 15 165 160 12 (250 251 15 1	-72 0 0 3 4 5 166 130 24	10 141 121 28 		3 3271 202 20 5 - 623 336 21 6 - 623 336 21
U 74 32 45 4 1 1 170 174 16 5 1 2 133 133 16 7 4 227 219 13 8	107 103 21 3 104 194 13 4 199 13 4 199 23 35 7 94 93 35 7			5 342 305 15 7 75 57 57 8 244 287 21	11 18 28 28
4 406 407 14 10 1 4 406 407 14 10 1 4 92 85 35 13 10 -08 18 30 14 1 11 107 81 30 14 1	87 70 47 4 178 23 10 140 140 28 11 81 73 62 12 103 103 39 14	125 120 2 C 108 153 2 C 175 2 C 175 2 C 175 2 C 175 2 C 175 2 C	9 283 284 18 9 164 169 25 164 169 25	11 200 757 23 12 -71 60 0 14 -72 74 0 15 -72 74 0 16 -72 74 0 17 0 10 0 10 0 10 0 10 0 10 0 10 0 10	1 186 186 28 2 - 70 51 00 4 - 72 14 00 5 - 72 14 00 6 109 112 48
15 -71 26 36 11- 2 1- 1 5- 8 1 1- 1 5- 8 1				0 400 641 34 0 400 641 34 103 124 56 0 107 14	4 132 108 41 H+ 13 K+ C C 156 99 71
1 76 77 33 6 1 2 -63 33 12 6 1 3 -68 31 0 7 1 5 78 75 48 81 6 131 138 25 9	132 133 20 107 106 31 107 49 50		3 127 147 32 5 115 123 35 6 -75 123 35 7 -60 92 47 8 .61 80 54	10 241 226 28 He 6 Ke 7 1 - 67 32 0 1 - 67 32 0	
7 - 60 15 0 10 - 6 - 66 19 0 11 - 9 129 128 28 12 - 10 - 71 58 0 13 1 12 - 71 18 0 13 1 12 - 71 18 0			10 -71 30 U		116 95 55 H- 14 8- 0
H+ 1 K+ 4 0 1 0 1/0 52 50 3 1 1 -67 7 0 4	88 71 41 1 88 71 48 1 80 74 30 1 80 77 30 1 80 77 30 1		1427 4885 1427 4885 1427 4885	10 -65 86 48 10 -65 86 48	1 170 130 16
3 93 94 39 5 - 4 76 87 95 9 - 5	20 30 57 50 57 50 57		107 101 37	******	

stereo drawings of the polyhedra about these atoms, and Table 10 contains the anisotropic B's for these atoms when refined as ordered structures in $P6_3/mmc$. It is probable that η Gd–Zn is a reasonably well-ordered example of the parent structure of this class. There are no anomalously large thermal parameters in this compound or other evidence for a disordered Gd(1) atom. In ηY -Zn there is a random substitution of pairs of Zn(13) atoms for approximately one-third of the Y(1) atoms at the origin. There is no evidence for substitution at Y(4), so the large thermal parameter is either real or a reflection of a positional disorder of the Y atom in the large cage. When Zn(13) atoms are present they are only 2.19 Å from Zn(1) at $0, 0, \frac{1}{4}$. Zn(1) is then probably pushed away to about z=0.28 and the large β_{33} for Zn(1) is more a result of positional disorder than of thermal motion. Zn(13) atoms cannot simultaneously be at 0, 0, z and $0, 0, \frac{1}{2}-z$ positions. Attempts to refine fractional Zn(1) atoms at $z=\frac{1}{4}$ and $z=\frac{1}{4}+\Delta$ were unsuccessful.

Table 10. Anisotropic B_1 for M(1) and M(4) thermal ellipsoids for several compounds refined in $P6_3/mmc$

The large B is parallel to the c axis in all cases.

	M(1)	M(4)
$\eta Pu-Zn$	2·4 Å ²	1.2 Å ²
	2.4	1.9
	4.2	13.8
ηGd-Zn	4.1	1.5
	4.1	0.7
	6.7	4.4
ηY-Cd	0.8	0.9
	0.8	2.3
	2.9	20 ·7
$\eta Y - Zn$	0.0	2.0
	0.0	1.7
	57.5	11.9
ηY –Zn (disordered)	0.3	1.9
	0.3	1.9
	1.8	10.4
	Zn(13)	
	1.4	
	1.4	
	2.5	

An example of random occupational disorder in the parent structure is thus given by ηY -Zn. The compounds ηPu -Zn, Y-Cd and Ce-Cd are examples of small, ordered changes in the parent structure. Unfortunately, we have so far been unable to solve the complete structure of ηY -Cd. We have carried out

1. 1.1

t., 1

lan 1916. Miles Miles and Statistics Miles Andreas Statistics

.

refinements starting with the parent η Gd–Zn structure and ignoring the reflections which cannot be indexed with the hexagonal lattice. The resulting B_i for Y(1) and Y(4) are also given in Table 10. There is no suggestion of substitution at the Y(1) site, but there is strong evidence for an anomaly at the Y(4) site. Additional anomalies are at the Cd(11) and Cd(12) sites, for Cd(11) is extremely anisotropic and Cd(12) has such large apparent thermal motion that it is probably absent entirely. The ordered changes that produce the superlattice in this compound are thus most likely associated with the Y(4), Cd(11) and Cd(12) sites.

References

- BURNHAM, C. W. (1962). I.U.Cr. World List of Crystallographic Programs, Program 338.
- BUSING, W. R., ELLISON, R. D., LEVY, H. A., KING, S. P. & ROSEBERRY, R. T. (1968). ORNL Report 4143. Oak Ridge National Laboratory, Tennessee.
- BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180.
- BUSING, W. R. & LEVY, H. A. (1967). Acta Cryst. 22, 457.
- CRAMER, E. M. (1968). Private communication.
- CRAMER, E. M. & WOOD, D. H. (1967). J. Less-Common Metals, 13, 112.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- ELLIOTT, G. R. B. & LEMONS, J. F. (1964). Advances in Chemistry Series, No. 39, pp. 144–152, 153–169. Edited by R. F. GOULD. Washington, D.C.: Amer. Chem. Soc.
- EVANS, H. T. (1961). Acta Cryst. 14, 989.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502.
- LARSON, A. C. (1970). In *Crystallographic Computing*. Copenhagen: Munksgaard.
- LARSON, A. C. & CROMER, D. T. (1966). Acta Cryst. 21, A84.

LARSON, A. C. & CROMER, D. T. (1967). Acta Cryst. 23, 70.

LOTT, B. G. & CHIOTTI, P. (1966). Acta Cryst. 20, 733.

- MASON, J. T. & CHIOTTI, P. (1970). Metallurg. Trans. 1, 2119.
- Roof, R. B. JR & ELLIOTT, G. B. R. (1965). *Inorg. Chem.* 4, 691.

WANG, F. E. (1967). Acta Cryst. 22, 579.

ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.